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Abstract

Recent work on automatically estimating the level of Positive Climate (PC) in school

classrooms, as defined by the Classroom Assessment Scoring System, has demon-

strated success in using deep neural networks to model the scene of a classroom as a

social network graph. We theorize that by tracking participants within a social graph

over time, we can attain higher CLASS prediction accuracy compared to previous

work which ignored students’ identities [1]. In this thesis, we (1) propose a process

for constructing an ordered social network graph data structure over time. We then

(2) conduct two experiments on simulated classroom observations to evaluate the

effect of tracking people in order to utilize interactions between individuals when

fitting a Graph Neural Network (GNN). Our findings suggest an improvement in

classification accuracy when harnessing the feature interactions using the proposed

tracking-based approach. Next, in an effort to improve the accuracy of tracking faces

over time, we (3) analyze the latent embedding space of pre-trained face embedding

networks and find suboptimal discriminability of faces in real-world classroom videos

with highly non-frontal pose and very young children. Finally, with the aim of im-

proving the discriminability of these embedding models, we (4) explore the viability

of fine-tuning a pre-trained face embedding network on classroom videos, where

the labels are extracted in a self-supervised manner. Experiments on classroom

videos from YouTube and the UVA Toddler dataset suggest this can be effective:

fine-tuning the pre-trained FaceNet, we adjust the embedding network to be bet-

ter suited for a classroom setting, improving from a test ROC AUC (distinguishing

same vs. different face) of 0.95 to 0.98 on unseen classroom observation videos [2]

[3] [4].
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Chapter 1

Introduction

A widely-used classroom observation protocol used by educational researchers is the

Classroom Assessment Scoring System, CLASS [5], which requires trained human

annotators to examine the state of the classroom and students for qualities that ex-

hibit social, organizational, and instructional support. CLASS is a valuable tool for

teachers and educational researchers—but human annotation is slow, expensive, and

requires weeks to months of training. Typical CLASS annotation sessions require

annotators to examine specific characteristics of the states, actions, and interactions

among the students and teachers during either live observation or video recordings.

A 2017 study from Chile found costs of individual classroom annotation to be in

the order of $100 [6]. The magnitude of these costs makes it difficult to provide raw

data for teacher feedback, a useful mechanisms for providing resources for teachers

to adjust their teaching methods to effectively support all students. We seek to im-

prove on initial work towards learning classroom climate classification by focusing

on CLASS-defined social interactions in a weighted social graph representation of

the classroom scene. By definition we focus on identifying positive interactions be-

tween student-teacher pairs to verify social support structures within the classroom

1
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Chapter 2

Background

The first work towards automating aspects of CLASS annotation makes strides to

estimate 3 minute clips of classroom observation videos which were most relevant

to CLASS annotators to code manually [5] [7]. However, more recently, there have

been a number of efforts to analyze the dynamics of a classroom, some focused on an

aggregate measure, such as [1] and [8], while others focused on individual students

[9]. Although there are many approaches for harnessing deep learning for measuring

educational metrics such as CLASS, many prior efforts focus on analyzing student

engagement and emotions [10]. While there are many different approaches to label-

ing classroom observations using CLASS metrics, we aim to distinguish short video

clips with high or low positive climate (PC). We follow the intuition behind CLASS

climate labeling methods by learning interactions between individuals encoded in a

social network graph representing the social scene of a classroom [5].

2.1 Graph Neural Networks

Graph Neural Networks (GNN) are broadly applied to graph classification, node

classification, and edge predictions tasks. We focus on these former of these tasks

3



CHAPTER 2. BACKGROUND 2.1. GRAPH NEURAL NETWORKS

where we are interested in using node and edge features which can assist with

identifying positive climate within a social graph representation of the classroom.

GNN layers can be categorized into three types of layers: convolutional, attentional,

and message-passing [11].

2.1.1 Convolutional GNN

Convolutional GNNs are a category of recent deep learning architecture applicable

for problems modeled as graphs. Although there are two notably different ap-

proaches to applying a transform on a graph data structure, spectral and spatial

convolution layers, they are similar in their outcome: features are aggregated across

neighbors with explicit graph-based regularization, as shown in Eq. (2.1) [11] [12].

Recent examples of convolutional GNNs are Graph Convolutional Networks (GCNs)

[12], Chebyshev Networks (ChebNet) [13], and Simple Graph Convolution (SGC)

[14].

hi = φ(vi,
⊕
j∈Ni

cijψ(xj)) (2.1)

This transform is useful to transfer information from neighboring nodes, in a manner

similar to a 2D convolution layer, while considering the topology of the graph. It is

especially useful for homophilous graphs when edges encode label similarity [11].

2.1.2 Attention GNN

Attention GNNs use implicit weights between neighboring nodes via attention αij =

a(vi, vj), as shown in Eq. (2.2) [11]. They differ from convolutional GNNs with these

learnable, more complicated combinational attention weights between nodes.

hi = φ(vi,
⊕
j∈Ni

a(vi, vj)ψ(vj)) (2.2)

4
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Recent examples of attentional GNNs are Graph Attention Networks (GATs) [15],

Gated Attention Networks (GaAN) [16], and Mixture Model Networks (MoNet) [17].

2.1.3 Message-passing GNN

Message passing GNNs use the sender and received nodes vi and vj to compute

messages mij = ψ(vi, vj) to be sent across edges, as shown in Eq. (2.3) [11]. This

requires an entire weight vector for each edge in the graph.

hi = φ(vi,
⊕
j∈Ni

ψ(vi, vj)) (2.3)

This variants of GNNs are often used for computational chemistry, reasoning, and

simulations. Recent examples of message-passing GNNs are applications in quantum

chemistry by Gilmer et al. [18], Interaction Networks [19], and GraphNet (GN) [20].

2.2 Social Network Graphs

Recent work in identifying classroom climate, ACORN [1], achieves significant inter-

coder reliability results with respect to expert labels using a multi-modal deep learn-

ing ensemble. In an experiment using a temporal uniform normalized Laplacian

matrix, where all other weights are 1
d
, such that the graph is a clique, ACORN

establishes that graph topology, or who is where, and interacting with whom, and

when is important for estimating classroom PC, achieving an average of AUC = 0.70

across 10-folds.

Traditional deep learning methods, particularly convolutional neural networks

(CNN) have been shown to perform poorly on data with underlying graph structures,

such as social network graphs. Some methods explore extending CNN components

5



CHAPTER 2. BACKGROUND 2.2. SOCIAL NETWORK GRAPHS

ft ft+1

Figure 2.1: Example of social graph structure for encoding relations between entities
on two frames of classroom observation video.

to graphs such as graph signal processing (GSP), which demonstrates graphs to

be perfect for capturing node interactions, which is of interest to our application,

especially on non-Euclidean data domains [21]. A recent application of GCNs on a

problem modeled as a spatio-temporal social network graph achieves state of the art

results and shows the model is able to capture behavior expected in humans [22].

The same work notably achieves these results with significantly less parameters are

and a fraction of the training data used by previously comparable methods which

did not model the scene as a graph.

2.2.1 Classroom Observations as Graphs

There are recent methods which successfully leverage computer vision for automat-

ing certain aspects of CLASS that identify relevant segments of classroom video

important for coders rather than predicting a label [7]. Other methods use dedi-

cated hardware to unify a multitude of contemporary machine learning techniques

[9]. Tapaswi et al. use character face tracks for facial embedding clustering and

achieve success resolving a large number of individuals through a combination of

facial (hair) and non-facial (clothing, spatial locations) cues [23], building off of pre-

vious work which uses a Siamese network trained on tuple sample with a boolean

indicator denoting if the samples are of the same or different faces [24].

6
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Sm=0.32 A=0.19 Sa=0.54 St=0.17

Sm=0.42 ... St=0.81

Sm=0.1 ... St=0.75

ft

ft + 1

ft - 1

Weighted Social Network GraphFrame-by-frame Object Detection

Gt

Graph Convolution

v’1,t

v’n-1,t

v’n,t

v1,t

vn,t

vn-1,t

G’t

Figure 2.2: Process of converting a sequence of classroom observation video frames
to social network graph.

Due to the requirements of our approach, we consider off-the-shelf object recog-

nition and tracking tools for our processing pipeline. Visual perception frameworks

such as OpenPose [25] and OpenFace [26] offer comparable utility as cloud services–

and are successful applied as low-level feature engines, processed to estimate higher-

level features. A concern when applying these tools is our niche classroom en-

vironment recognition task. Often, researchers build bespoke perception systems

specific to student learning environments [27]. Similar toolkits are available for ob-

ject tracking [28], but only some address multi-object tracking (MOT) [29] [30].

These techniques are applied as part of our scene to graph pipeline shown in Figure

2.2, where an example sequence of frames ft−1, ft, ft+1 is used to show the creation

of a weighted social network graph Gt = (Vt, At) from frame ft, where each node

vn,t ∈ Vt contains feature vector consists of emotion and age information as proposed

in [1].

7
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2.3 Embedding Networks

Suppose we want to determine whether two objects are of the same class, even

in scenarios where the classes seen during testing are not the same during training.

One approach which can provide us information about the object is an embedding, a

latent interpretation of the object. Embedding networks used to create these object

embeddings can be trained to place the embedding in a high-dimensional latent

space with meaningful locations to other objects which we might be interested in

comparing to, such that similarly labelled objects are clustered in close proximity.

We then can use these embeddings to compare the objects they represent. The

Euclidean distance between the two embeddings is a measure of difference, while

the cosine similarity can be interpreted as a measure of similarity.

Embedding networks are commonly combined with object detection techniques

as a method of identifying and comparing objects within the same or different scenes.

Recent embedding network such as FaceNet apply this technique to facial detections,

which are pre-processed by an alignment step performed by Multi-task Cascaded

Convolutional Neural Network (MTCNN) [2] [31]. FaceNet embeds images into a 512

dimension latent space, and is trained on CASIA-WebFace [32] and VGGFace2 [3]

separately, the network trained on the latter achieving a state of the art performance

of 99.63%± 0.09 mean classification accuracy on Labeled Faces in the Wild (LFW).

FaceNet minimizes triplet loss which, inspired by nearest-neighbor classification,

aims to ensure that an image of the same person xai (anchor) is closer to all other

images of the same person xpi (positive) than it is to any image of any other person

xni (negative) as shown in Fig. 2.3, is defined as

N∑
i

[
‖f(xai )− f(xpi )‖22 − ‖f(xai )− f(xni )‖22 + α

]
+
, (2.4)

8
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Figure 2.3: Triplet loss example before and after learning, where the distance be-
tween the anchor and a positive is minimized while maximizing the distance between
the anchor and a negative [2].

where α is a hyperparameter defining margin that is enforced between positive and

negative pairs [2]. Tapaswi et al. improves upon this strict definition of the hyper-

sphere with a supervised approach for defining the layout of this latent space [23].

Notably, the training procedure of FaceNet emphasizes the necessity of selecting

hard triplets, which are triplets that do not already easily fulfill the constraint with

the current weights. Done näıvely, following this procedure requires forward prop-

agating each of the training samples for an estimation of similarity to inform these

pickings. Therefore, the training procedure avoids selecting the hardest negatives to

mitigate entering a poor local minima during training and instead selects semi-hard

xni where the norm between xai and xpi is less than that of xai and xni . An effective

method of selection is crucial for fast convergence, especially combined with small

mini-batch sizes used for the same reason during Stochastic Gradient Descent (SGD)

[33].

The datasets which FaceNet is trained on consist of semi-automatically collected

face images from the internet, often overwhelmingly consisting of celebrities and

other widely photographed individuals. Therefore, the resulting networks are inher-

ently biased to perform better on this population which they have been exposed to,

and poorly on younger individuals’ faces, which we are interested in embedding. For

niche tasks such as our own, a common technique to increase performance is known

as fine-tuning, where a pre-trained model is further trained on a dataset which is

9
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better representative of the task in consideration, starting with a small learning rate

and annealed as necessary.

Siamese Neural Networks consist of two networks with shared weights that are

joined at their output with a feed-forward network. They were first introduced

for signature verification by Bromley et al. which trained the parallel networks

and used only one for a signature to embedding representation task which was then

evaluated with a comparison function between a stored representation for the signer’s

original embedding [34]. These types of networks are similar to the embedding

networks which are relevant to our task in their learning of a latent representation

for similarity necessitating task. In effect, a Siamese Neural Network can be used

with a similar binary classification task, where the network learns to differentiate

positive and negative matching faces rather than including both a positive and

negative example in each training sample. Taigman et al. experiment with Siamese

networks which optimizes L1-distance between face features to achieve 97.35% on

LFW using an ensemble of three networks combined using a non-linear SVM [35].

The latent representation used at the output of each of the parallel networks are

similar to the embeddings which FaceNet outputs, as the learned high-dimensional

hypersphere representing the latent space are structured in similar manners, where

clustered samples are aimed to be easily distinguishable from others.

2.4 UVA Toddler

The University of Virginia (UVA) Toddler dataset consists of 192 CLASS-coded

videos, each approximately 45-60 minutes long. The videos are from 61 early child-

hood care centers, where the students are toddlers 2-3 years old. All videos were

recorded from classrooms in a Mid-Atlantic state of the USA. For our purpose, each

10
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Table 2.1: Distribution of positive climate labels of 125 classroom observation videos
in the UVA Toddler dataset.

of the videos is split into short clips with high or low PC. To lessen the effect of erro-

neous social network construction, and to simplify our tracking problem, we cap the

number of face detections in each frame to 22, the maximum number of participants

in any of the UVA Toddler classroom videos. Given the non-uniform distribution of

PC labels shown in Table 2.1, it is clear why a regression approach is necessary, in

combination with efforts to counter the effects of an unbalanced dataset on model

fit.

In a similar fashion as ACORN [1], we can investigate our ability to generalize

to elementary and middle school students, as well as compare climate classification

accuracy using the Measures of Effective Training (MET) dataset, which contains

thousands of videos and is similarly CLASS-coded.

11



CHAPTER 2. BACKGROUND 2.5. RESEARCH QUESTIONS

2.5 Research Questions

We propose a number of questions to focus our experimentation towards the goal

of verifying whether the intuition behind human annotation of CLASS climate is

applicable deep learning classification techniques.

RQ1. Is the traditional graph data structure sufficient to encode temporal social

interactions such that a deep network can exploit spatial information to inform

climate prediction?

RQ2. What is the effect of erroneous tracking on our classification?

RQ3. Can we predict climate more accurately, even with sources of error in the

construction of the graph data structure?

RQ4. Can we improve tracking accuracy by fine-tuning existing facial embedding

techniques, given poor performance on children in our classroom setting?

12



Chapter 3

Simulated GNN

We theorize that if we apply a graph convolution network on social graphs repre-

sentation of our classroom observations, we can capture key interactions between

participants which are central to distinguishing between high and low PC. In this sec-

tion, we introduce GCN models with node tracking capabilities which are designed to

learn our simulated feature-based thresholds for classification. This network archi-

tecture combines graph convolution and shared-weight LSTM layers which processes

the graph time series node-wise and then aggregate the hidden states for each node

via a graph pooling mechanism to then classify classroom positive climate. Fig-

ure 3.1 compares this architecture to a similar network which ignores participant

identities by pooling before the time series processing step instead. We conduct a

series of experiments to compare the ability to predict CLASS climate by tracking

participants in classroom videos with increasing complexity of node interactions.

3.1 Model Architecture

We define a social network graph as the graph representation of individuals in each

frame of classroom observations, where the feature vectors of length v for each

13
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person contain float elements indicating smiling, anger, sadness, and probability the

individual is a student, P (student) (equivalent to 1−P (teacher)), as established in

previous related work [1]. Our social network graph follows a standard graph data

structure for each time step: Gt = (Vt, At) with n nodes, each with 4 features per

node, such that Vt ∈ Rn×4, where each row is the feature vector for a particular

person, and At ∈ Rn×n. Notably, we do not define an adjacency as a ∈ Vt × Vt.

Instead our adjacency matrix is weighted by the inverse pixel distance between nodes

such that it depicts a full graph, in which each adjacency aij is

aij = 1− d(vi, vj)√
w2 + h2

(3.1)

for each (vi, vj) ∈ Vt×Vt, where d a function of the Euclidean distance between vi and

vj, and w, h are the width and height of the simulated video frame, respectively. This

process results in an adjacency matrix between 0 and 1 which more heavily weights

closer neighbor nodes. In our simulated environment, the number of individuals

represented by nodes n is held constant over the course of the time series.

Given this full graph structure, all nodes are convolved in each graph convo-

lution layer, therefore we must be careful to avoid over-convolving towards a fully

entropic graph state. Inspired by a simple formulaic depiction of a feed-forward

neural network, which omits the bias term, we can define our graph convolution

layer as follows: for layer l, our spatial graph convolution layer activation output

H
(l)
t is

H
(0)
t = Vt

H
(l+1)
t = σ(LtH

(l)
t W (l))

(3.2)

14
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where the symmetric normalized Laplacian Lt is

Lt = It −D
− 1

2
t AtD

− 1
2

t , (3.3)

in which It ∈ Rn×n is an identity matrix, W (l) is the convolution kernel weights of

the given layer, D is the degree matrix with diagonal Dii =
∑

j Aij, and σ is the

non-linear activation function ReLU. We follow each graph convolution layer with

layer normalization to address an exploding gradient [36].

3.2 Tracking-based GNN

Using this structure for our graph convolution layer, we define a tracking-based

and tracking-free pair of models for PC classification, shown in Figure 3.1. For our

purposes in this section, the tracking-based GNN aims to process the timeseries

belonging to each of the individuals within a classroom observation separately. The

tracking-based model includes a graph convolution layer for each time step t, after

which each of the the convolved feature vectors v′n,t are concatenated temporally

to once again represent a spatio-temporal social network. We splice the vertex

set node-wise such that each tracked node has an individual time series, and then

aggregate using a bidirectional LSTM with 8 neurons, which is used for each node

time series but shares weights across all nodes. We then pool across the output

hidden states, such that we retain information from all nodes. On the other hand,

the tracking-free model does not assume tracked features are retained across the

time steps of the temporal social network graph, and includes a global pooling layer

across nodes such that pool(Gt) ∈ Rv×1, also followed with a bidirectional LSTM

layer. Both models include a final fully-connected layer for binary classification,

which is the PC classification task we focus on for these experiments.

15
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Temporal Graphs

G’t+1

G’t-1

G’t

Node-wise Graph Splice

v’1,t+1 ... v’n-1,t+1 v’n,t+1

v’1,t ... v’n-1,t v’n,t

v’1,t-1 ... v’n-1,t-1 v’n,t-1

v’n,t-1 v’n,t v’n,t+1

Bidirectional LSTM

hn,thn,t-1 hn,t+1
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ŷ

G’t
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+
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hn-1 h1
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a) Tracking network

Pt+1

Pt-1

Pt

Bidirectional LSTM ClassificationNode-wise Global Pooling

Pool

ht+1
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ht-1

ŷ
G’t

b) Tracking-free network

Figure 3.1: Architectural differences between our two proposed graph convolution
models.
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To evaluate the design choices of our architecture model, we define a tracking

problem: given a plausible classroom scenario, where tracking the state and proxim-

ity of nodes to each other is causally related to the PC label, we construct a randomly

generated time series with length t seconds of features for n nodes. We seek to repli-

cate the process of identifying key classroom moments within the larger duration of

the video with a threshold decision function. We sample our input features V ∈ Rn×t

such that each feature vn,t ∼ U(0, 1), and evaluate for y as follows: a threshold func-

tion must be met for a percentage of features vn,t and again by a percentage of the

nodes for a positive label. We aim to introduce a requirement which pairs of nodes

must meet simultaneously that is unable to be captured with an architecture that

does not perform node-wise processing. However, we expect a real world data set,

with higher dimension features and a more complex ground truth label function,

might perform differently and therefore comparisons of tracking methods would be

difficult to evaluate consistently.

3.3 Feature-based Interactions

We continue our experimentation by expanding the method with which we deter-

mine our ground truth label: we consider proximity-based interactions with features

which we sample from U(0, 1). The final identity features of teachers and students

are sampled from uniform distributions U(0, 0.5) and U(0, 0.5), respectively. Addi-

tionally, we simulate participant movement across a frame by random initializing

participants across our standard scene size with height h and width w and sampling
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movement vectors of each participant:

∆x

∆y

 = γ ∗

U(0, w)

U(0, h)

 , (3.4)

where γ is a small hyperparameter to mimic movement. We clip the final positions

of participants such that it cannot exceed the bounds of our simulated frame, and

prevent sparse graph representations due to occlusion or exit of scene events, which

are common in real world data. In addition to these changes, we adjust our evalu-

ation of y by defining a proximity threshold as a proportion of the diagonal of the

frame to count a student-teacher interaction as positive in our simulated dataset

construction.

3.4 Tracking Error

As mentioned in RQ2, we are interested in the effects of erroneous matches when

tracking individuals over the course of a classroom observation. Therefore we addi-

tionally conduct an experiment in which we simulate datasets of increasing length in

frames. For each frame simulated, we introduce a probability p of an erroneous swap

occurring, during which the features vn,p of two random individuals are switched and

therefore are matched to their new identifies in the next processed frames. We in-

vestigate both how a given probability p of a swap occurring and the corresponding

length of the simulated timeseries correspond to the AUC ROC.
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a) Tracking model

b) Tracking-free model

Figure 3.2: Training results of a simple single feature simulation for the tracking-
based network compared to the tracking-adverse model. Both models were trained
for 100 epochs, using lr = 1e − 2 and a dataset simulated with n = 4 nodes and
t = 10 timesteps.

Figure 3.3: ROC AUC of simulated models given increasing probabilities of a swap
error occurring during the construction of the dataset.
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Figure 3.4: Tracking vs. tracking-free test binary accuracy for n nodes. Models
were trained for 100 epochs, with early stopping and optimal weight restoration to
maximize validation set metrics for each simulation configuration.

3.5 Results

As described in Section 3.1, we compare two architectures for classification, where

a bidirectional LSTM layer is either followed by a pooling layer, as in the tracking-

based network, or preceded by a pooling layer, as in the tracking-adverse network.

This distinction is visualized in Figure 3.1. We examine the effect which node-level

data loss contributes to the network’s ability to fit to a correlation defined for each

individual time series by comparing test classification accuracy. Furthermore, as

shown in Figure 3.3, training on longer datasets with a higher swap probability p

resulted in lower ROC AUC, although the results on shorter datasets are less con-

clusive and fluctuate significantly. In order for a tracking-based graph convolution

network to work better than a tracking-free variant, the discriminability of face

embeddings must be good to minimize the swapping of individuals.
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As shown in Figure 3.2, we identify an accuracy improvement when tracking

participants, most likely due to loss of meaningful features required for the inter-

action learning we seek to accomplish. These results affirm two key points: our

tracking-based architecture seem to be able to capture the node interactions, and

the tracking-adverse model is able to perform seemingly well even in the absence

of learning interactions. Identifying the performance difference provides us a base-

line comparison differential of node-level learning, which is especially useful in the

context of real-world data. This supports further investigation of expanding our

simulation to include more participants additionally validated by Figure 3.4, which

presents a performance difference in a trend of increasing accuracy given increasingly

larger graphs. We hypothesize, following the assumption that CLASS climate labels

are based upon node interactions, that given a sufficiently deep node feature cap-

ture method, we can identify a method which employs graph convolution for social

network feature propagation and tracking-based time series processing, that cap-

tures this interaction sufficiently enough to perform better than a tracking-adverse

network. In this way, we seek to identify a method which is able to understand the

causal mechanism of how the node-wise interactions result in CLASS climate.

Results of further experimentation on the efficacy of the proposed architecture

on our problem, described in Section 3.3, are shown in Figure 3.5. By increasing

the simulated participant features available, and expanding the logic of our ground

truth labels to account for complex interactions which are reliant on more of the

available features, we create a significantly more difficult to capture differentiation

between labels. Although most notably the differences between model accuracy

are not clearly identifiable, this lack of an accuracy difference may be indicative

of our models ability to capture very nuanced interactions which are reliant on

several feature requirements in tandem. This introduces an opportunity for node

21



CHAPTER 3. SIMULATED GNN 3.5. RESULTS

a) Tracking model

b) Tracking-free model

Figure 3.5: Training results of a simulation for the tracking-based network compared
to the tracking-adverse model. Both models were trained for 100 epochs, using
lr = 1e − 3, with our dataset simulation configured to n = 22 nodes and t = 10
seconds.

22



CHAPTER 3. SIMULATED GNN 3.5. RESULTS

attention mechanisms to identify key neighboring nodes for our graph convolution

steps, which we expect to be necessary for success considering the initial findings

of [1]. Furthermore, we do not concede the ability of a tracking-based network

to achieve success on real world data, given the difficulty to represent the true

relationship between social interactions and PC labels as exists in the UVA Toddler

dataset.
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Chapter 4

Tracking

To create the necessary data to train and evaluate our GNN with, we convert the

videos available to us to a graph data structure. We aim to improve on techniques

demonstrated in ACORN by evaluating an application of our proposed tracking-

based graph classification method [1]. To achieve this, we consider methods with

which we can track individuals, representing nodes, between sequential temporal

frames of video using traditional object tracking methods such as GOTURN [28], or

trying to exploit our knowledge of limited nodes with unsupervised node embedding

network, such as node2vec [37]. In this section, we aim to establish a node-wise

sorted vertex set V for all frames to fulfill the data structure assumptions held by

our tracking-based network.

4.1 Experiments

As discussing in Section 2.3, embeddings can be used to evaluate and then maxi-

mize facial similarity between detected individual’s faces in sequential frames. After

evaluating all combinations of faces, we pick those with the highest similarity until

there are no possible remaining matches. Although this greedy method does not
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mean that we guarantee a globally optimal solution, it may yield a locally optimal

solution that approximates a globally optimal one in a reasonable computational

time. Since we are interested in evaluating the classification accuracy between the

tracking-based and tracking-free architectures described in Figure 3.1, we want to

be able to construct our social network graphs from classroom video that have min-

imal erroneous swaps between detected individuals. If there are too many erroneous

swaps due to incorrect matches, we expect to observe a corresponding decrease in

classification accuracy of the tracking-based approach.

We manually annotate faces in matching first and last frames from six clips, each

of length 90 second and extracted from publicly available classroom videos, using

the VGG Image Annotator (VIA) [38]. The resulting dataset consists of ordered

listing of individuals in each of the frames, such that the identifiers matched across

the first and last frame tuples.

4.1.1 Matching Individuals

We first compare a few accessible off-the-shelf facial detection tools: FaceNet [2],

OpenCV [39], MTCNN [31], YOLOv3 [40], and implementations based off the afore-

mentioned frameworks, controlling for the recognition threshold. In a comparison

of the number of faces consistently detected in a clip of video, YOLOv3 resulted in

the highest number of detected faces with the lowest amount of observed variance

[40].

Using our manually labeled faces, we want to understand how accurately we

are able to match detected faces across frame pairs. Our evaluation of similarity

between two detected faces as a combination of Euclidean distance and embedding
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cosine similarity, where parameter δ determines the weight of each:

δ ∗ E(Ap) · E(Bp)

‖E(Ap)‖‖E(Bp)‖
+ (1− δ) ∗ ‖Axy −Bxy‖, (4.1)

with embedding network E(x), where each individual, here denoted as A and B,

have 2-dimensional coordinate vector (Axy for person A and Bxy for person B) and

facial pixels (Ap for person A and Bp for person B). We could alternatively use the

Euclidean difference between embeddings for similar results, as the two methods of

similarity are comparable and proportional. Using YOLOv3 as our facial detection

component and FaceNet as the embedding network, we evaluate matching faces

across 90 second gaps, corresponding to the clips we manually annotated [40] [2].

Results

When using only the embeddings as our evaluation of who is who (δ = 1), the

resulting accuracy was inconsistent and far from ideal, ranging from 25% to 62.5%.

On the other hand, experimentation with a low δ demonstrated success of videos

which previously had low accuracy but did not improve our tracking accuracy across

all video clips. However, our task is dependant on success tracking individuals within

video frames consistently across sequential frames. Therefore the results found when

tracking across first and last frames of video clips are not indicative of a lack of

accuracy on such a problem. So we evaluate our pipeline in a different manner, this

time establishing an assumption which allows us to evaluate over a large number of

comparisons: we can match detected faces across near-sequential frames by greedily

picking the matching face based on the Intersection over Union (IoU) of the two

bounding boxes. Sampling every 9 frames of video, with the ground truth labels

found with this assumption, we find that using only similarity of embeddings (δ = 1)
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we are able to match with 89% accuracy, where the average IoU of all the matching

frames is 34%. We repeat this experiment, instead sampling every sequential frame

and find similar results.

4.1.2 Average Point Drift

Considering RQ3, we acknowledge a few sources contributing to inaccuracies be-

tween the true distribution of individuals within a frame of video and a possible

graph representation which we may learn on. We can consider discrepancies be-

tween these two as a result of the errors at each of the following steps:

• detection of faces within each frame,

• matching of individuals between frames, and

• interim feature construction.

We can estimate the results of the first two points given the assumption that on

average, individuals move fairly consistently over the course of the video. This

enables us to evaluate our success in this endeavour over segments of video by

analyzing the proximity of our matched faces between frames. We expect that over

time, given a small enough error between the two aforementioned components in

our video to social graph pipeline, we will observe consistent movement. Errors in

this process can be observed by the associated high variability of this metric. We

refer to this measure as Average Point Drift (APD).

Results

A comparison of APD over a video clip with different values of the hyperparameter δ,

shown in Figure 4.1, indicates lower tracking accuracy when the method of tracking
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δ = 1 δ = 0.5

Figure 4.1: Plots of APD across 300 frames of classroom video. Spikes indicate
likely erroneous swap occurrences between individuals, moments where the method
of greedily matching faces based on the similarity heuristics made a decision which
resulted in a large spatial difference between the matches.

solely uses embeddings (δ = 1), instead of when a mix of embeddings and Euclidean

distance is used (δ = 0.5). Even with an optimal configuration for each segment of

video, this approach would only succeed in tracking all individuals a few seconds

at a time. Every few seconds, the tracking pipeline would incorrectly swap the

nodes which the features are associated with, and assuming we continue to correctly

match individuals, this would continue until a another erroneous swap occurred,

likely swapping the feature vectors of two different nodes than before. This means

that a temporal graph data structure which we derive from a 90 second video, which

we are primarily interested in, would contain anywhere from 100 erroneous swaps of

the temporal feature representations between all individuals. Although we believe

that at a smaller scale this may be tolerable in a robust network, the frequency

of these errors justifies experimentation towards improving our matching accuracy.

Since the primary heuristic for the aforementioned greedy matching process is facial

embeddings, we focus on fine tuning FaceNet for our embedding task such that

we are able to identify an improvement in embeddings on a dataset consisting of

28



CHAPTER 4. TRACKING 4.2. CLASSROOM OBSERVATION FACES

children in classroom observation videos 1.

4.1.3 Latent Space Analysis

Linear Discriminant Analaysis (LDA) is a method used to find a linear combina-

tion of features that best separates the classes which the features describe. For our

task, we are interested in investigating the discriminability of the embeddings of

our detected faces. Since this method requires more than one sample for each of

the classes, we aggregate the temporal embeddings representing each of our tracked

individuals’ faces. We apply LDA on the collection of embeddings, with each in-

dividual assigned a sequential integer as their class, and compare the progression

of the primary feature across a 90 second classroom observation video clip, shown

in Figure 4.2. Notably, the collection of data of a tracked individual in this video

likely includes erroneous swaps between the features of individuals, contributing to

the increasing visual indiscriminability of the plotted embeddings. However, since

each plot contains progressively more data points, aggregated since the beginning

of the video clip, this observation is not applicable to the individual per-frame pair

task of matching but rather indicative of generally poor consistency of embeddings

across the course of a video clip.

4.2 Classroom Observation Faces

The process of fine tuning FaceNet necessitates a unique approach due to the diffi-

culty of sourcing data suited to our task. Since we aim to improve our embedding

accuracy on children in temporal proximity, the best source of data is videos similar

to the ones which we aim to generate social network graph structures from. Initially,

1We use the open source implementation and training procedures of FaceNet developed and
trained by David Sandberg, source at https://github.com/davidsandberg/facenet [2].
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LDA of embeddings at 10 seconds. LDA of embeddings at 30 seconds.

LDA of embeddings at 60 seconds. LDA of embeddings at 90 seconds.

Figure 4.2: Linear Discriminant Analysis (LDA) of tracked individual’s face embed-
dings over the course of a 90 second classroom observation video clip.
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we use publicly listed classroom observation videos found on YouTube to find face

tuples which we can use to construct the data necessary for training on. However,

since our tracking problem is self-supervised, we are free to fine tune on the same

data that we apply our network to. Given this additional source of faces for training

data, we still partition unseen videos to evaluate our fine tuned network weights

with.

As described in detail in Section 2.3, FaceNet optimizes triplet loss, which re-

quires the training data to consist of an anchor, a positive match to the anchor,

and a negative which is different from the anchor [2]. Furthermore, for fast con-

vergence, the training process necessitates the selection of hard triplets which do

not already fulfill the triplet loss constraint. Since the process of sourcing of our

data does not permit the same class-based structure that the datasets which were

originally used to train the network follow, we instead we apply the IoU method of

identifying matching faces 3 frames apart, and repeat this across the length of the

videos available to us. This allows us to maintain a high consistency in correctly

matching individuals in separate frames while also often finding faces with sufficient

differences in the data contained within their cropped image tuples. This process

constructs a triply-nested dataset that does not permit hard triplet mining, and

necessitates us to source the negative sample from the same frame pair from which

the anchor and matching positive are derived from.

The results of our dataset construction are as follows: from the 20 publicly listed

YouTube videos we used as our initial source, we process 33,891 frames of video that

can be used to construct triplet (with at least two matching faces) found across the

frame pairs. Repeating this process on the UVA Toddler videos, we further process

an additional 168,254 frames of video that are usable in training.
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4.2.1 Cropping Considerations

The datasets which FaceNet are originally trained on are centered and aligned using

MTCNN [2] [31]. This means the original image of an individual, often framed as

a wide portrait, has a face detection process applied to it, the result of which is

then used to adjust and crop the original image, as defined in [31]. This process

results in uniquely adjusted face images, and is noted as necessary to fine tune

FaceNet properly [2]. Since we use YOLOv3 as our method of facial detection in

our process of dataset construction, we investigate the differences between using the

two methods [40].

We compare a small number of faces for which we generate different bounding

boxes for using both YOLOv3 and MTCNN [40] [31]. We then find the Manhattan

and Zero norm—the sum of the absolute values and the number of elements not

equal to zero, respectively—between the two images. We repeat this process for

a baseline example image and compare it to itself with a Gaussian blur applied.

For context, the Zero norm per pixel of the example image with a Gaussian blur

applied is simply 1. With this process, the norms of the Gaussian blur difference are

about five and three orders of magnitude greater than than the maximum values

observed in our differently cropped faces. Visual, qualitative comparisons of the

different face detection methods support these findings. We further explore the

differences between these methods by comparing an example detected face to itself

cropped by 80%. In this case, the Manhattan norm increases by five orders of

magnitude, indicating a similar conclusion that the differences between the original

FaceNet alignment method and ours are not sufficiently large enough to warrant

re-constructing our dataset with MTCNN as our method of face detection [2] [31].
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4.3 Fine-tuning FaceNet

We use the Classroom Observation Faces dataset to fine-tune the FaceNet weights

originally trained on VGGFace2 [2] [3]. Since the format of our data does not match

the requirements necessary to mine hard triplets, we instead create a procedure to

construct our triplets without consideration for the affect of the fitting the network

weights to the given sample. From the experiments conducted in Section 4.1.1, we

know that the network is able to successfully embed many of our observed faces with

sufficient similarity for our matching task, however we aim to fine-tune the network

to extend this success, and specifically improve the performance of the network on

the faces of children, which are not included in VGGFace2 or CASIA-WebFace [3]

[32]. Additionally, since we use triplets which include temporally similar faces, we

further fine-tune the network to embed these faces, which already have a low Zero

norm, closer in the embedding space. Although we may already expect these to be

embedded similarly if we were training an embedding network from scratch, with

newly initialized weights, because of the aforementioned pixel similarity, the reality

of our embedding matches experiment in Section 4.1.1 shows otherwise.

While fine-tuning FaceNet, we are able to evaluate the tuned network weights

with accuracy on Labeled Faces in the Wild (LFW), the dataset and corresponding

metric which the network was originally trained to excel on [2] [4]. However, more

meaningful is an evaluation of the tuned network weights using a metric that is

applicable to our matching task, even if it corresponds with worse LFW accuracy.

Therefore, we primarily consider the area under the receiver operating characteristic

curve (ROC AUC) after evaluating which of the triplet faces match to the anchor

using cosine similarity.
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Figure 4.3: Training loss curve while fine-tuning FaceNet on the Classroom Obser-
vation Faces dataset for 40 epochs with an initial lr = 1e−5 that is annealed further
by a schedule [2].

4.3.1 Results

We fine-tune the network at the following learning rate schedule:

• Epoch 0: 1e− 5

• Epoch 15: 1e− 6

• Epoch 25: 1e− 7

for 40 epochs total. The training loss curve is shown in Figure 4.3. During train-

ing, we observed many triplets that resolved to effectively 0 loss, with sparse cases

resulting with significantly higher loss many orders of magnitude larger. This is

34



CHAPTER 4. TRACKING 4.3. FINE-TUNING FACENET

likely due to that we do not mine hard triplets when generating them. As a result,

the training process is less efficient than if only hard triplets were selected, and we

continue iterating over already robustly represented samples for all epochs. The ini-

tial face classification (same vs. different face) test ROC AUC was 0.95, while after

training this increased to 0.98. After the fine-tuning process, the resulting network

weights evaluated to 91.4% ± 0.015 accuracy on LFW with a validation rate (true

accepts over number of same pairs) of 46.93%± 0.031 at FAR = 0.001.
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Conclusion

We demonstrated that inter-node requirements can be approximated with tracking-

based graph neural networks by processing the timeseries of nodes with a sharing

bidirectional LSTM, and identified a necessity for high accuracy tracking to succeed

with this requirements. Since the video to ordered social network graph pipeline

of state-of-the-art object detection and embeddings networks did not perform as

well as we would like, we constructed a novel dataset of classroom faces consisting

primarily of children’s faces, using the IoU of detected faces in temporally close

frame pairs as an indication of ground truth identities. We then fine-tuned FaceNet

weights originally trained on VGGFace2 and evaluated on LFW, to improve the

discriminability of children’s faces in classroom observation videos from the original

0.95 test ROC AUC to 0.98 [2] [3] [4]. Although we do not manage to apply this

procedure to convert the UVA Toddler video clips to social network graphs, we are

able to improve the applicability of the embedding network on matching faces in

classroom observation video.

The pipeline which we use required the loading of two fairly large neural networks

in tandem. We designed software to synchronously load networks and batch jobs
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through each network as necessary. This may not be the most efficient method

of using many CUDA enabled networks in parallel, however performance was not

a primary consideration. Rather, we required stability to ensure efficient usage of

Turing cluster resources. Fine-tuning FaceNet required a recreation of the triplet

loss training procedure, including a new method of loading the dataset. This training

procedure on the entire Classroom Observation Faces dataset took just over an hour

per epoch on an NVIDIA Tesla P100, and managing GPU memory usage during

this process was difficult, often resulting in allocation issues.

5.1 Future Work

The most interesting next component of work is using the system we have developed

in the original goal of this thesis, to evaluate a tracking neural network on a binary

PC label, or even evaluating on a regression task of predicting the exact granular

label. This would additionally be complemented by a comparison to the PC classi-

fication AUC of Ramakrishnan et al. [1]. This comparison would be best conducted

given the same short clip configuration from videos in the UVA Toddler dataset.

Additional promising work includes expanding the capability of using FaceNet as

an embedding method of children’s faces. This would require sourcing more publicly

available classroom observations, which could include 70 videos used as a dataset

by Ramakrishnan et al. as well as including the MET dataset, and generating an

expanded dataset of matching faces to sample triplets from [1]. Furthermore, as

discussed in Section 2.3, alternative networks which include similar latent represen-

tations of facial pixels can be evaluated for a similar face matching task. Another

consideration which we intended to explore when fine-tuning was optimizing both

LFW accuracy and test ROC AUC. This would ensure that we do not sacrifice
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success of general embeddings for success on our niche pre-K classroom task. Fur-

thermore, although we are unable to mine hard triplets such that we achieve a

similar training convergence speed as described by Schroff et al., we can still se-

lect the more difficult triplets which are available to us, discarding those which are

unnecessary, and as a result saving resources and compute time, allowing a larger

dataset containing faces from additional classroom observation videos to be exposed

to the network during fine-tuning [2].
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