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Abstract
Recent work contributing to the automation of
CLASS positive climate (PC) classification has
demonstrated success in using deep models to
learn classroom climate by modeling the scene of
a classroom as a social network graph. We the-
orize that by tracking participants across a social
graph, we can attain higher CLASS prediction
accuracy compared to previous work which ig-
nored identities of students [1]. We discuss initial
experimentation on simulated classroom obser-
vations to evaluate the effect of tracking partic-
ipant nodes to identify interactions, and outline
the performance improvements of this method
considering our intuition behind PC annotation.
Furthermore, we suggest methods of tracking
participants required to construct such a data
transformation and propose several experiments
on an authentic dataset of preschool classroom
interactions (UVA Toddler).

1. Introduction
A widely-used classroom observation protocol used by ed-
ucational researchers is the Classroom Assessment Scoring
System, CLASS [2], which requires trained human anno-
tators to examine the state of the classroom and students
for qualities that exhibit social, organizational, and instruc-
tional support. CLASS is a valuable tool for teachers and
educational researchers–but human annotation is slow, ex-
pensive, and requires weeks to months of training. Typical
CLASS annotation sessions require annotators to examine
specific characteristics of the states, actions, and interac-
tions among the students and teachers during either live
observation or video recordings. A 2017 study from Chile
found costs of individual classroom annotation to be in the
order of $100 [3]. The magnitude of these costs makes it
difficult to provide raw data for teacher feedback, a use-
ful mechanisms for providing resources for teachers to ad-
just their teaching methods to effectively support all stu-
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dents. We seek to improve on initial work towards learning
classroom climate classification by focusing on CLASS-
defined social interactions in a weighted social graph rep-
resentation of the classroom scene. By definition we fo-
cus on identifying positive interactions between student-
teacher pairs to verify social support structures within the
classroom environment.

2. Prior Work
The first work towards automating aspects of CLASS anno-
tation made strides to estimate 3 minute clips of classroom
observation videos which were most relevant to CLASS an-
notators to code manually [4]. However, more recently,
there have been a number of efforts to analyze the dynam-
ics of a classroom, some focused on an aggregate measure,
such as [1] and [5], while others focused on individual stu-
dents [6]. Although there are many approaches for harness-
ing deep learning for measuring educational metrics such
as CLASS, many prior efforts focus on analyzing student
engagement and emotions [7]. While there are many dif-
ferent approaches to labeling classroom observations using
CLASS metrics, we aim to distinguish short video clips
with high or low positive climate (PC).

2.1. Graph Convolution for Social Network Graphs

Graph convolution networks (GCNs) are a category of re-
cent deep learning architecture applicable for problems
modeled as graphs. Although there are two notably dif-
ferent approaches to applying a convolution transform on
a graph data structure, spectral and spatial graph convo-
lutions, they are similar in their outcome: label informa-
tion is smoothed out over the graph via a form of explicit
graph-based regularization [8]. This transform can be used
for node or graph classification tasks, where it is useful to
transfer information from neighboring nodes, in a manner
similar to a 2D convolution layer, while considering the
topology of the graph.

Recent work in identifying classroom climate, ACORN
[1], achieves significant inter-coder reliability results with
respect to expert labels using a multi-modal deep learn-
ing methods ensemble. Some of the experimentation in-
cludes GCNs, attention layers, and a 3-layer bidirectional
LSTM to aggregate temporal features. Additionally, with
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an experiment using a uniform normalized Laplacian ma-
trix which contains identity matrix I and where all other
weights are 1

d , such that the graph is a clique, ACORN es-
tablishes that graph topology, or who is where and interact-
ing with whom when is important for estimating classroom
PC, achieving an average of AUC = 0.70 across 10-folds.

Traditional deep learning methods, particularly convolu-
tional neural networks (CNN) have been shown to perform
poorly on data with underlying graph structures, such as
social network graphs. Some methods explore extending
CNN components to graphs with graph signal processing
(GSP) [9]. Graphs have been demonstrated to be perfect for
capturing node interactions, especially on non-Euclidean
data domains. A recent application of GCNs on a prob-
lem modeled as a spatio-temporal social network graph
achieves state of the art results and shows the model is able
to capture behavior expected in humans [10]. The same
work notably achieves these results with significantly less
parameters are and a fraction of the training data used by
previously comparable methods which did not model the
scene as a graph.

2.2. Machine Perception for Classroom Observation

There are recent methods which leverage computer vision
for automating aspects of CLASS that identify relevant seg-
ments of classroom video important for coders rather than
predicting a label [4]. Other methods use dedicated hard-
ware to unify a multitude of contemporary machine learn-
ing techniques [6]. Due to the requirements of our ap-
proach, we consider off-the-shelf object recognition and
tracking tools. Visual perception utilities such as Open-
Pose [11] and OpenFace [12] offer similar utility as cloud
services–and are successful applied as low-level feature en-
gines, processed to estimate higher-level features. A con-
cern when applying these tools is our niche classroom en-
vironment recognition task. Often, researchers build be-
spoke perception systems specific to student learning en-
vironments [13]. Similar toolkits are available for object
tracking [14], but only some address multi-object tracking
(MOT) [15] [16]. These techniques are applied as part of
our scene to graph pipeline shown in Figure 1.

3. Proposed Research
We theorize that if we use social graphs representations of
our classroom observations and apply a spatial graph con-
volution layer we can capture key interactions between par-
ticipants which are central to distinguishing between high
and low PC. We propose a series of experiments to com-
pare the ability to learn CLASS climate by tracking par-
ticipants in classroom videos, and demonstrate this on ex-
periments with increasing complexity of node interactions.
We define a social network graph from each frame of class-

room observations, and use object recognition to generate
each of the node’s features, a 4× 1 column vector consist-
ing of smiling, anger, sadness, and Pr(student) (equiva-
lent to 1 − Pr(teacher)) features [1]. Our social network
graph follows a standard graph data structure: n nodes in
a given graph Gt = (Vt, At) with v features per node,
such that V ∈ Rn×v . Our adjacency matrix A ∈ Rn×n

is weighted with the inverse pixel distance between nodes.
Given our weighted graph structure, where all edges are
non-zero, such that |A| = |V |×(|V |−1)

2 , all nodes are con-
volved in each spatial graph convolution layer; we have to
take care to avoid over-convolving towards a fully entropic
graph state. Inspired by the simple formulaic depiction of
feed-forward neural network, which omits the bias term,
we can define our graph convolution layer as follows: for
layer l, our spatial graph convolution layer activation ma-
trix H(l)

t is

H
(0)
t = Vt

H
(l+1)
t = σ(LtH

(l)
t W (l))

where our symmetric normalized Laplacian Lt is

Lt = It −D
− 1

2
t AtD

− 1
2

t ,

W (l) is the convolution kernel weights of the given layer,
and σ is our non-linear activation function ReLU. We fol-
low each graph convolution layer with layer normalization
to address the exploding gradient problem. Using this ap-
proach for our graph convolution task we define a tracking
and tracking-adverse pair of models for PC classification,
shown in Figure 1.

3.1. Research Questions

We propose a number of questions to focus our experiments
on. We aim to address these points to verify the ability of
our model: can we learn social interaction by tracking par-
ticipants in a social network graph, and does reflecting our
understanding of how CLASS climate is labeled by human
annotators in the network architecture improve this ability?

• Does tracking participants in a social scene help in im-
proving performance of PC classification, compared
to a tracking-free approach which does not consider
the identities of students and teachers?

• Can we, using node attention mechanisms in our
graph convolution layers, identify node interactions?
How can we verify our model is learning these interac-
tions rather than fitting to intrinsic trends in our data?
Are there mechanisms we can use to validate our ex-
pected behavior when training on simulated data?

• Are there architecture choices with which we can
make learning interactions more general, considering
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Figure 1. An example sequence of frames ft−1, ft, ft+1 is used to show the creation of a weighted social network graph Gt = (Vt, At)
from frame ft, where each node ni ∈ Vt contains feature vector vn,t, consisting of emotion and age information as proposed in [1].

our real-world data? A deeper network approach–
applying convolution-based feature mapping–is diffi-
cult to train on our small dataset, so we use off-the-
shelf tools for our feature vector generation. Given
this consideration, can we somehow use a highly ab-
stract feature matrix (e.g. facial pixels) to improve the
accuracy and generalization of our model? Can we
apply other CLASS-coded datasets as our unseen test
set to verify generalization improvements? Are we
able to compare these approaches and identify a train-
ing set size at which a deeper learning approach may
fare better?

• Can we exploit an ensemble model earlier in our graph
construction pipeline to create a more meaningful fea-
ture vector with which we can improve our accuracy
by minimizing our dependency on a single expression
classification tool?

• How accurately can we track nodes? How will our
ability to track affect our results: given a tracking ac-
curacy across frames, can we estimate how well we
expect to do?

3.2. Model Proposals

We introduce several shallow models for simple node track-
ing which are able to quickly learn simple feature-based
thresholds required for classification. Additionally, we
propose several models which include similar architecture
choices, although generally aim to be more broadly appli-
cable and therefore successful on our real world dataset as
compared to simulated problems.

• A graph convolution and shared-weight LSTM archi-

tecture which processes node-wise time series and
then congregates the individual hidden states via a
graph pooling mechanism, to then classify climate.
Figure 2 compares this architecture to the equivalent
network which ignores participant identities. This ap-
proach aims to capture the complexity of participant
interactions as a means of PC identification further
than the simulations discussed in Sections 3.5 & 3.3.
Although comparing increasing complexity ground
truth labeling functions can help identify performance
of the network in learning these defined trends, we
specifically aim to generalize our approach by mini-
mizing feature engineering efforts on simulated data.
Success found in these efforts would be transferable
to work on the UVA Toddler dataset.

• We aim to evaluate techniques shown in ACORN [1]
to improve correlation, such as attention-based graph
convolution and pooling, and experiment with com-
bining these methods with our approach, using mech-
anisms which have shown promise on graph classifi-
cation tasks, such as Gated Graph Neural Networks
(GGNN) [17].

Furthermore, we consider the methods with which we can
track nodes between temporal graphs Gt, Gt+1: traditional
object tracking methods such as GOTURN [14], or trying
to exploit our knowledge of limited nodes with using unsu-
pervised node embedding network, such as node2vec [18].
Comparing different levels of abstraction of our features
for embedding may be useful if seeking to improve con-
sistency of tracking, but nonetheless we aim to establish a
node-wise sorted vertex set V for all frames to fulfill the
assumptions held by our tracking-based network.
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Figure 2. Architecture diagrams depicting our proposed a) tracking-based network and b) tracking-free network. Both models use
classroom observation video as input–then diverge in node tracking assumptions. Model a) includes a graph convolution layer for each
time step t, after which the convolved feature vectors v′n,t are concatenated temporally to once again represent a spatio-temporal social
network. We splice the vertex set Vt node-wise such that each tracked node has an individual time series, and then aggregate using a
bidirectional LSTM which is used for each node time series but shares weights across all nodes. The then pool across the output hidden
states such that we retain information from all nodes. On the other hand, model b) does not assume tracking information is retained
across the time steps of the temporal social network graph and includes a global pooling layer across nodes such that pool(Gt) ∈ Rv×1,
followed with a bidirectional LSTM layer. Both models include a final fully-connected layer for binary classification.
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3.3. Simulated Interactions

To evaluate the design choices of our architecture model,
we first define a tracking problem and corresponding
dataset. We use a plausible classroom scenario, where
tracking the state of nodes is directly relevant to the PC la-
bel, and construct randomly generated time series of length
t seconds for n nodes. This system of labeling seeks to
replicate the process of identifying key classroom moments
within the larger duration of the video.

We work forward, generating our input x ∈ Rn×t by
simply sampling xn,t ∼ U(0, 1) and evaluating for y as
follows: for each time step t, each feature xn,t in our
simulated time series must pass a threshold, an activation
which must be first met independent of other nodes and
then passed by another threshold of nodes. For our pur-
poses, these thresholds are 50%. Therefore, we introduce
a inter-node requirement that is unable to be captured with
an architecture that does not perform node-wise process-
ing. We expect a higher complexity dataset, with higher
dimension features and a more complex ground truth label
function, would perform significantly differently and com-
parisons of tracking methods would be difficult to evaluate
consistently.

3.4. Emulating CLASS

To continue our experimentation, we add two heavily prob-
lem altering considerations for determining our ground
truth: proximity-based interactions and obfuscation with
additional features. Our input expands to another dimen-
sion to contain f features, which we again sample from
U(0, 1). Teachers and students are ensured to always be
distinguishable by constraining the sample distribution to
(0, 0.5) and (0.5, 1), respectively. In addition to features,
we simulate participant movement across a frame by first
initializing participants across our standard scene of size
w×h and sampling movement vectors of each participant:[

∆x
∆y

]
= γ ∗

[
N (0, w)
N (0, h)

]
,

where γ is a small weight to limit movement. We clip the
final positions of participants such that it cannot exceed the
bounds of our simulated frame, and prevent sparse graph
representations due to occlusion or exit of scene events,
which are common in real world data. In addition to these
changes, we adjust our logic of evaluating y by defining
a proximity threshold, a proportion of the diagonal of the
frame, to count a student-teacher interaction as positive.
Although not shown in the relevant results discussed in
Section 3.5, we explore additional complexity such as em-
ulating sadness and anger features and implementing simi-
lar threshold-based logic to identify meaningful interaction
only when participants are not overtly negative in expres-

a) Tracking model

b) Tracking-free model

Figure 3. Training results of a simple 1-feature simulation for a)
the tracking-based network compared to b) the tracking-adverse
model. Both models were trained for 100 epochs, using lr =
1e − 2, with our dataset simulation configured to n = 4 nodes
and t = 10 timesteps. Such a configuration allows the models to
quickly fit the dataset by learning node interaction requirements
we defined in our ground truth label function.

sion.

3.5. Initial Results

We apply a straightforward architecture for classification,
where a bidirectional LSTM layer is either a) followed by
a pooling layer, as in the tracking-based network, or b) pre-
ceded by a pooling layer, as is implemented in the tracking-
adverse network. We examine the effect which node-level
data loss contributes to the network’s ability to fit to a corre-
lation defined for each individual time series by comparing
test classification accuracy.

As shown in Figure 3, we identify a significant accuracy

Figure 4. Tracking vs. tracking-free test binary accuracy for n
nodes. Models were trained for 100 epochs, with early stopping
and optimal weight restoration to maximize validation set metrics
for each simulation configuration.
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a) Tracking model

b) Tracking-free model

Figure 5. Training results of a simulation for a) the tracking-based
network compared to b) the tracking-adverse model. Both models
were trained for 100 epochs, using lr = 1e− 3, with our dataset
simulation configured to n = 22 nodes and t = 10 seconds.

improvement when tracking participants, primarily due to
information loss required for the interaction learning we
seek to accomplish. These results affirm two key points:
our tracking-based architecture seem to be able to cap-
ture the node interactions, and the tracking-adverse model
is able to perform seemingly well even in the absence
of learning interactions. Identifying the performance dif-
ference provides us a baseline comparison differential of
node-level learning, which is especially useful in the con-
text of real-world data. This supports further investigation
of expanding our simulation to include more participants
additionally validated by Figure 4, which similarly presents
a performance difference in a trend of increasing accu-
racy given increasingly larger graphs. We can hypothesize,
following the assumption that CLASS climate labels are
based upon node interactions, that given a sufficiently deep
node feature capture method, we can identify a method
which employs graph convolution for social network fea-
ture propagation and tracking-based time series processing,
that captures this interaction sufficiently enough to perform
better than a tracking-adverse network. In this way, we
seek to identify a method which is able to understand the
causal mechanism of how the node-wise interactions result
in CLASS climate.

Initial results of further experimentation on the efficacy of
the proposed architecture on our problem, by effectively
further obfuscation of the logic in our ground truth label
function, are shown in Figure 5. By increasing the simu-
lated participant features available, and expanding the logic
of our ground truth labels to account for complex interac-
tions which are reliant on more of the available features,
we create a significantly more difficult to capture differen-
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Figure 6. Distribution of positive climate labels of 125 classroom
observation videos in the UVA Toddler dataset. Given the non-
uniform distribution of PC labels, it is clear why a regression ap-
proach is necessary, in combination with efforts to counter the
effects of an unbalanced dataset on model fitting.

tiation between labels. Although most notably the differ-
ences between model accuracy are not clearly identifiable,
this lack of an accuracy gap may be indicative of our mod-
els ability to capture very nuanced interactions which are
reliant on several feature requirements in tandem. This in-
troduces an opportunity for node attention mechanisms to
identify key neighboring nodes for our graph convolution
steps, which we expect to be necessary for success con-
sidering the initial findings of [1]. Furthermore, we do not
concede ability to achieve success on real world data, given
the difficulty to represent the true relationship between so-
cial interactions and PC labels as exists in the UVA Toddler
dataset.

3.6. Datasets

The University of Virginia (UVA) Toddler dataset consists
of 192 CLASS-coded videos, each approximately 45-60
minutes long. The videos are from 61 early childhood care
centers, where the students are toddlers 2-3 years old. All
videos were recorded from classrooms in a Mid-Atlantic
state of the USA. For our purpose, each of the videos is split
into short clips with high or low PC. To lessen the effect of
erroneous social network construction, and to simplify our
tracking problem, we cap the number of face detections in
each frame to 22, the maximum number of participants in
any of the UVA Toddler classroom videos.

In a similar fashion as ACORN [1], we can investigate
our ability to generalize to elementary and middle school
students, as well as compare climate classification ac-
curacy using the Measures of Effective Training (MET)
dataset, which contains thousands of videos and is simi-
larly CLASS-coded.
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4. Timeline

Objective Dates
Evaluation on UVA Toddler Aug. 31 - Oct. 31

Tracking Participants Nov. 1 - Dec. 16
Attention & GGNN Experimentation Jan. 12 - Feb. 19

Thesis (Draft) Feb. 20 - Mar. 18
Thesis (Final) Mar. 19 - Apr. 21
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